Entries tagged as Celestron NexStar 6SE

Nebulas and galaxies in the spring sky

Orion Nebula (Messier 42, 25% size)

I haven't taken a look at nebulas and galaxies in several years - the last time I did so was back in November 2015. With the clear evening skies persisting for a few days, I thought that it was a good time to make a return observation. The easiest, and thus the first target was the bright Orion Nebula. I first made several attempts with my iPhone X, but it did not yield the level of quality I wanted and switched to Sony A5000 for the result above. As it was April, the nebula was heading towards the horizon in the southwestern sky and thus subject to less than dark background and drowning out darker portions.

Bode’s Galaxy (Messier 81, 38% size)

Moving to the northern sky, I took a look at something I haven't checked out since moving to Naju - the Bode's Galaxy and the Cigar Galaxy. I last saw them in May 2014 in Suwon. Due to the worsening light pollution I can't say I had better observation conditions, but I did have better equipment now. And the results speak of this advantage, as the galaxies were captured in finer detail. I especially like how the variation of brightness appears in the Cigar Galaxy below.

Cigar Galaxy (Messier 82, 38% size)


Telescope: Celestron NexStar 6SE + f/6.3 focal reducer
Device: Sony A5000 (prime focus)
Settings: (945mm) - ISO 1000(#1) / 2500(#2) / 3200(#3) - 30s - (f/6.3)
Filters: None
Time: 2018-04-09 20:23-20:38(#1) / 22:27-22:40(#2) / 22:49-23:10(#3) KST
Location: Naju, Korea
5(#1) / 10(#2) / 13(#3) photos stacked with Deep Sky Stacker 3.3.4

Getting the telescope back on its feet

Jupiter and Saturn on April 8, 2018

It's been about two years since I did astrophotography with my Celestron telescope. When I finally took it out of storage to take the photos of ISS recently, I noticed that the shots weren't as clear as I expected. The same problem came up as I tried to take photos of the Orion Nebula yesterday, and I realized that the collimation of the telescope was significantly off. After about an hour of fiddling, the problem was fixed and I was able to see the bands of Jupiter and the Cassini Division on Saturn again. It looks like I'm good to go for the next few months of observation, including the closest approach of Mars on July 31. Here are the photos of the two planets in the order of original (from 4K 60fps recording), stacked, and wavelet processed results. Resolution was roughly 0.32"/pixel due to the iPhone X having slightly wider lens than iPhone 6S Plus.

The look of Jupiter before and after collimating the telescope


Telescope: Celestron NexStar 6SE + X-Cel LX 9mm eyepiece
Device: iPhone X (afocal)
Settings: 28mm - ISO 50 (Jupiter) / 250 (Saturn) - 1/60s - f/1.8
Filters: None
Date/Time: 2018-04-08 05:18 (Jupiter) / 05:30 (Saturn) KST
Location: Naju, Korea
100 (Jupiter) / 46 (Saturn) photos stacked with PIPP 2.5.6 and RegiStax 6.1.0.8

ISS and Rigel as seen by iPhone X

Composite of 50 frames showing ISS making a pass near Rigel (35% size)

The International Space Station was to make a very close pass to Rigel, one of the brightest stars making up the Orion constellation, last Saturday evening where I live. The separation at the closest point was around 0.055°, making it look like the space station passing right over the star to the naked eye. Instead of manual tracking, I decided to fix the telescope on Rigel and record the pass with iPhone X's 4K 60fps video mode. A total of 50 consecutive frames captured the rapid movement. The windy condition, coupled with relatively low angle (35.6°) blurred the results a lot, so I should try this technique again at a higher angle.


Here's the rotated video of the pass, once at the original speed and once at the slow speed.

Telescope: Celestron NexStar 6SE + X-Cel LX 9mm eyepiece
Device: iPhone X (afocal)
Settings: 28mm - ISO 880 - 1/1500s - f/1.8
Filters: None
Date/Time: 2018-03-24 20:00:59 KST
Location: Naju, Korea

Watching ISS with telescope, 2nd try

International Space Station observed on July 30, 2016
ISS pass, animated

When you try to keep up with fast-moving objects with the manual control of the telescope motors, the lack of fine-grained steps become a big limitation. Speed 6 moves at about 0.267 degrees/second and 7 at 1 degree/second, while the International Space Station moves at a speed that is somewhere in between, depending on the distance. To alleviate this slightly, practice and preparation were needed. I fixed the finder scope misalignment and added a camera mount to the telescope. iPhone 6 Plus was placed on the mount to act as a secondary finder scope, much like what I did on my Canon SX50 HS camera three years ago. These made it much easier to have the telescope point at the International Space Station.

As a result, I managed to photograph about 220 frames of the station in two minutes this time, enough to show the movement like the one I did with the old camera two years ago when I came to Naju. The space station was farther away and a lot dimmer (504km vs 685km, -3.5 mag vs -1.6 mag at culmination) than the previous attempt with the telescope, meaning less details. Even so, I think I was able to identify the SpaceX Dragon spacecraft that went up for the CRS-9 mission, which was attached to the bottom of the Harmony module just ten days before.

Telescope: Celestron NexStar 6SE + X-Cel LX 9mm eyepiece
Device: iPhone 6S Plus (afocal)
Settings: 29mm - ISO 720 - 1/1400s - f/2.2
Filters: None
Date: 2016-07-30 KST
Location: Naju, Korea
Stacked with PIPP 2.5.6 and RegiStax 6.1.0.8

Photos: 10 / 9 / 12 / 6 / 9 / 12 / 28 / 4 / 10 / 14 / 8
Time: 20:18:58 / 20:19:07 / 20:19:12 / 20:19:26 / 20:19:39 / 20:19:41 / 20:19:45 / 20:19:50 / 20:19:58 / 20:20:06 / 20:20:12

Tracking ISS with a telescope

International Space Station observed on June 17, 2016

Directly imaging a fast-moving object in the sky like ISS by tracking it manually becomes more difficult with higher magnification. I could barely manage it with the Canon SX50 HS camera with 1.46"/pixel resolution. Using iPhone 6S Plus on the NexStar 6SE telescope with a 9mm eyepiece gives 0.31"/pixel resolution, making the field of view nearly 5 times narrower. Indirect method, which images the moment when the ISS passes in front of another celestial object, is easier because the telescope is focused on a fixed location. This is what I did a year ago. But such opportunity is much harder to come by, so I eventually decided to give the direct method a try with the telescope.

There were many uncertainties, such as what camera settings I should use on my iPhone and whether the telescope's motors would be fast enough. I would have to make guesses and hope for the best. To increase the chances of catching the moments at a high resolution when it entered the view, I used the 4K (3840x2160, 8.3MP) 30fps video recording mode with highest ISO and fastest shutter speed possible. One thing I did manage to "tie down" was the iPhone itself. The Universal Smart Phone Adapter from Modern Photonics that arrived in the mail just in time was the best solution I tried for attaching the phone to any eyepiece I had.

In the end, I was able to capture 22 frames in total out of about 100 seconds of recording. Targeting the space station with a non-magnified finder scope turned out to be quite difficult and focusing was also somewhat tricky. I need more practice to nail these down better. Fortunately, the motor was more than fast enough and the camera settings worked out. Plus, the processed results already outdid the ones from SX50 HS - major parts of the station are much more recognizable. They also explain what I was looking at in the old blurry shots. Looks like I'll be trying more of this in the future.

Telescope: Celestron NexStar 6SE + X-Cel LX 9mm eyepiece
Device: iPhone 6S Plus (afocal)
Settings: 29mm - ISO 720 - 1/1400s - f/2.2
Filters: None
Location: Naju, Korea (time in KST)
Stacked with PIPP 2.5.6 and RegiStax 6.1.0.8

#1: 9 photos @ 2016-06-17 20:39:38
#2: 5 photos @ 2016-06-17 20:40:03

Copyright (C) 1996-2018 Wesley Woo-Duk Hwang-Chung. All rights reserved.